Limited distribution of new quinolone antibacterial agents into brain caused by multiple efflux transporters at the blood-brain barrier.
نویسندگان
چکیده
Transport of new quinolone antibacterial agents (quinolones) at the blood-brain barrier (BBB) was studied in vitro by using immortalized rat brain capillary endothelial cells RBEC1, and in vivo by using the brain perfusion method in rats and multidrug-resistant mdr1a/1b gene-deficient mice. The permeability coefficient of grepafloxacin measured by brain perfusion was increased by an excess of unlabeled grepafloxacin, suggesting a participation of a saturable BBB efflux system. Uptake coefficients of [(14)C]grepafloxacin, [(14)C]sparfloxacin, and [(14)C]levofloxacin by RBEC1 cells at the steady state were increased in the presence of the unlabeled quinolones. The steady-state uptake of [(14)C]grepafloxacin was increased in the presence of various quinolones. Brain distributions of [(14)C]grepafloxacin and [(14)C]sparfloxacin evaluated in terms of the brain-to-plasma free concentration ratio in mdr1a/1b gene-deficient mice were significantly higher than those in wild-type mice, demonstrating an involvement of P-glycoprotein as the efflux transporter. Anionic compounds, including 4, 4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and genistein, increased the steady-state uptake of [(14)C]grepafloxacin by RBEC1 cells. Because [(14)C]grepafloxacin was transported by multidrug resistance-associated protein (MRP), in MRP1-overexpressing cells and because RBEC1 and primary cultured brain capillary endothelial cells expressed MRP1, this protein may be an additional efflux transporter for quinolones. Furthermore, the permeability coefficient of [(14)C]grepafloxacin across the BBB was increased by DIDS or in the absence of bicarbonate ions in the brain perfusion method. DIDS or bicarbonate ion did not affect MRP1 function. Accordingly, the brain distribution of quinolones is restricted by the action of multiple efflux transporters, including P-glycoprotein, MRP1, and an unknown anion exchange transporter.
منابع مشابه
Efflux transport of a new quinolone antibacterial agent, HSR-903, across the blood-brain barrier.
The distribution of HSR-903, a new quinolone antibacterial agent, to the brain after i.v. administration to rats was low compared with that to other tissues. The blood-brain barrier permeability to HSR-903 determined by the brain perfusion method was low, and increased nonlinearly with increasing concentration of HSR-903 in the perfusate. When the brain-to-plasma concentration ratio (Kp, brain)...
متن کاملInvolvement of multiple transporters in the efflux of 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors across the blood-brain barrier.
Statins, 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, are frequently used for the treatment of hypercholesterolemia. The present study aimed to examine the involvement of organic anion transporters in the efflux transport of pravastatin and pitavastatin across the blood-brain barrier (BBB). Transport studies using cDNA-transfected cells revealed that these statins are substrates of mult...
متن کاملDmd049254 659..667
Antifolates, in particular methotrexate (MTX), have been widely used in the treatment of primary and secondary tumors of the central nervous system (CNS). Pemetrexed (PMX) is a novel antifolate that also exhibits potent antitumor activity against CNS malignancies. Studies have shown that brain distribution of both antifolates is significantly restricted, possible due to active efflux transport ...
متن کاملKinetic evidence for active efflux transport across the blood-brain barrier of quinolone antibiotics.
A distributed model has been used to clarify the mechanism of the restricted and differential distribution of the quinolone antibiotics in the rat central nervous system (CNS). The symmetrical permeability clearances across the blood-brain barrier (BBB), PS(BBB), and across the blood-cerebrospinal fluid barrier (BCSFB), PS(CSF), and the active efflux clearances across the BBB, PS(BBB,eff), were...
متن کاملNeotrofin is transported out of brain by a saturable mechanism: possible involvement of multidrug resistance and monocarboxylic acid transporters.
Neotrofin (AIT-082; leteprinim potassium) is transported out of brain by a saturable mechanism and in this study the mechanisms mediating this efflux were evaluated. Intracerebroventricular coadministration of [(14)C]Neotrofin with verapamil, a P-glycoprotein inhibitor, probenecid, an organic anion transporter inhibitor, 3-[[3-[2-(7-chloroquinolin-2-yl)vinyl]phenyl]-(2-dimethylcarbamoylethylsul...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 295 1 شماره
صفحات -
تاریخ انتشار 2000